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Abstract

Theory and computational model for a glow discharge in a parallel-plate configuration with an applied transversal

magnetic field is presented. The model is based on the diffusion-drift theory of gas discharge consisting of continuity

and momentum conservation equations for electron and ion fluids, as well as the Poisson equation for the self-con-

sistent electric field. Two-dimensional numerical results are obtained for nitrogen at a pressure range from 5 to 10 torr,

the electromotive force of power supply of 2–3 kV, and magnetic field induction of )0.1 6 B 6 0.1 T. The present

results, without the applied external magnetic field, compare favorably with the classic theory of von Engel and

Steenbeck. For the first time, the physics-based model also successfully applies to the glow discharge under the influence

of an external magnetic field. It has been shown that at B � 0:01 T, the glow discharge shifts correctly in the normal

direction relative to both the magnetic and electric fields.

� 2004 Elsevier Inc. All rights reserved.
1. Introduction

Achievements in aerospace and electromagnetic technologies of past decades allow a real possibility to

create hypersonic air vehicles at a Mach number greater than 6. At such high velocity, the traditional flow

control mechanism is often ineffective due to significant physical–chemical modification of airflow. Under

this condition, additional physical mechanisms for flow control become necessary. Since the later 1950s,

scientific literature has discussed the possibilities of using electromagnetic fields for modifying weakly

ionizing gas flows in aerospace applications [1,2]. A productive approach to flow control can be derived

from applying an external electromagnetic force to a flow field in an electrically conducting medium.
One of the well-known physical methods for enhancing the electrical conductivity of the flow medium is

using glow discharge (see Fig. 1). This type of electrical discharges is widely used in plasma generation for

physical investigations due to its simplicity and high efficiency. However, even for this relative simple

plasma generation process, there is very limited numerical simulation capability to describe the glow
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Fig. 1. Schematic of a glow discharge with external magnetic field.

438 S.T. Surzhikov, J.S. Shang / Journal of Computational Physics 199 (2004) 437–464
discharge behavior. The pioneering efforts by Engel and Steenbeck [3,4], Brown [5], Howatson [6], and

Raizer [7] in the physics of gas discharge are well known, their mathematic models were built on the

dominant physical process of the forced diffusion and drift velocity of charged particles. This predictive

theory has demonstrated a wide range of applicability of the fully ionized gas mixture. However, a chal-

lenging issue of the diffusion-drift model is encountered in the sheath region of the electrodes where the
charge separation takes place to drastically alter the physical behavior of the discharge column [7,8].

Through the works of Ward [9,10], Graves and Jensen [11], Boeuf and Marode [12], and Raizer and

Surzhikov [13,14], it was found that the diffusion-drift model has a validated range beyond expectation.

Incorporating the physics-based approximate boundary conditions indeed may extend the applicability of

the diffusion-drift model.

In glow discharge, the main supply of electrons is obtained from the secondary emission from the

cathode by the impingement of the positive ions [3–6]. The energy exchanged in collision for a weakly

ionized gas can still be purely kinetic. In other words, the electromagnetic forces between charged particles
can only produce a negligible path deflection at considerable distance. The physics becomes increasingly

complex when the glow discharge is subjected to an external magnetic field, because charged particles tend

to gyrate around the lines of magnetic flux. This interaction with the magnetic field affects the drift velocity

generated by electrical field and concentration gradient.

In aerospace application, the magnetic Reynolds number of the glow discharge is often negligible, thus

the induced magnetic field is also insignificant [1–5]. To achieve a strong electromagnetic-aerodynamic

interaction, plasma generation by glow discharge is frequently applied concurrently with an external

magnetic field. Therefore, a better understanding and the ability to model the effect of an applied external
magnetic field is essential.

The main subject of the present study is focused on the interaction of a glow discharge with external

magnetic field, which are of practical interest for aerospace applications. Based on the developed theory of

glow discharges in magnetic field, it will be shown that the magnetic field can be used as control mechanism

for modifying physical structure of the glow discharge.
2. Diffusion-drift model of glow discharge

Direct current glow discharges (DCGD) are weakly ionized gases sustained by an external electric field.

The applied field, coupled with the relatively low rate of energy transfer between electrons and the much

more massive neutral species, results in highly energetic electrons (electron temperature Te > 10; 000 K and

relatively low temperature neutral species ðTn � 300 K). Ions transfer energy readily in elastic collisions
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with neutral species and are therefore usually near the neutral species temperature. Because of the huge

difference in energy contents of electron and neutral species, the discharge is not in thermodynamic equi-

librium. Furthermore, the highly energetic electrons are capable of ionizing and dissociating the neutral
species at high rate even though the bulk gas temperature is quite low.

It was found that a diffusion-drift model of partially ionized gas mixture (neutrals, ions and electrons) can

predict all general characteristics of such discharges in the pressure range from 1 to 50 torr and with voltage

drops across the electrodes from0.3 to 10 kV [7,9–11,13,14]. Taking into account the fact that a glowdischarge

is a weekly ionizing gas, it is possible to include the undisturbed external magnetic field. This implement will

affect the electrodynamic structure of the glow discharge, but will not significantly disturb the plasma gen-

eration process. A mathematic model of this phenomenon will also be investigated by the present effort.

A planar glow discharge in molecular nitrogen between flat electrodes is considered (Fig. 1). The dif-
fusion-drift theory [3,7,9,11] will be used for description of gas discharge processes. This theory is based on

continuity equations for concentration of electrons ne and positive ions nþ together with the equations for

the electro-static field E ¼ �gradu:

one
ot

þ oCe;x

ox
þ oCe;y

oy
¼ aðE; pÞ Cej j � bnþne; ð1Þ
onþ
ot

þ oCþ;x

ox
þ oCþ;y

oy
¼ aðE; pÞ Cej j � bnþne; ð2Þ
o2u
ox2

þ o2u
oy2

¼ 4peðne � nþÞ; ð3Þ

where Ce and Ci are the electron and ion flux densities, respectively,

Ce ¼ �De gradne � neleE;Cþ ¼ �Dþ gradnþ þ nþlþE:

In this formulation, aðE; pÞ and b are the first Townsend ionization coefficient and recombination coeffi-

cient, le and lþ are the electron and ion mobilities, and De and Dþ are the electron and ion diffusion

coefficients. In the charge conservation equation (3), u is the potential of electric field, and the e is the

electron charge, e ¼ 1:6� 10�19 C. As it will be discussed later, j is the electric current density,

j ¼ eðCþ � CeÞ; jCej ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2

e;x þ C2
e;y

q
.

To introduce a magnetic field in the model, the following momentum conservation equations for elec-

tronic and ionic particles must be included [8,15]:

qe

oue

ot
þ qe ue � rð Þue ¼ �rpe � se � ene E

�
þ 1

c
ueB½ �

�
� memenne ueð � unÞ � memeþne ueð � uþÞ; ð4Þ
qþ
ouþ

ot
þ qþ uþ � rð Þuþ ¼ �rpþ � sþ þ enþ E

�
þ 1

c
uþB½ �

�
� mþmþeni uþð � ueÞ � mþmþnnþ uþð � unÞ;

ð5Þ

where ue; uþ are the velocities of electronic and ionic gases, qe; qþ are the densities of electronic and ionic
gases, qe ¼ mene; qþ ¼ mþnþ, me;mþ are the mass of electron and ion. The un is the mass-averaged velocity

of neutral particles, pe; pþ are the electronic and ionic pressures, se; sþ are the viscosity stress tensor

components of electronic and ionic gases, men; meþ; mþn are the frequencies of electron-neutral, electron-ion,

and ion-neutral collisions. Finally, B is the inductivity of magnetic field.
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In view of the fact that me � mþ, and it follows that qeðue � rÞue � qþðuþ � rÞuþ. In this case, it is

possible to simplify Eq. (4) as follows:

�rpe � ene E

�
þ 1

c
ueB½ �

�
� memenne ueð � unÞ � memeþne ueð � uþÞ ¼ 0: ð6Þ

Again, for ue � un; uþ and pe ¼ nekTe½K�, Eq. (4) can be further reduced,

kTerne þ eneEþ ene
c

ueB½ � þ memeð Þneue ¼ 0: ð7Þ

Finally, it becomes

neue ¼ �Derne � leneE� lene
c

ueB½ �; ð8Þ

where le ¼ e=meme is the electron mobility, De ¼ ððkTe½K�Þ=eÞle is the electron diffusion coefficient, and the

averaged electron collision frequency is approximated by me ¼ men þ meþ.
For the condition, the electron velocity has two components ue ¼ fue;x; ue;yg and supposing that the

magnetic field has only z component Bz (see Fig. 1), the charged particles flux densities become:
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1
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�
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� leneEx

�
; ð10Þ

where be ¼ ðle=cÞBz; Ex;Ey are the components of the electric field intensity along the x and y coordinates,

respectively.

Similarly, the momentum conservation of the ionic species also attains the following form

�rpþ þ enþ E

�
þ 1

c
uþB½ �

�
� mþmþenþ uþð � ueÞ � mþmþnnþ uþð � unÞ ¼ 0: ð11Þ

Assume that mþmþenþðuþ � ueÞ ¼ �memeþneðue � uþÞ, un ¼ 0, and meme � mþmþn, it is obtained

nþuþ ¼ �Dþrnþ þ lþnþEþ lþnþ
c

uþB½ �; ð12Þ

where lþ ¼ e=ðmþmþnÞ is the ions mobility, Dþ ¼ ððkTþ½K�Þ=eÞlþ is the ions diffusion coefficient.

For the present two-dimensional analysis, the ions velocity has only two components uþ ¼ fuþ;x; uþ;yg,
and the magnetic field has only z-component Bz, we can write:

Cþ;x ¼ nþuþ;x ¼
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�
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where bþ ¼ ðlþ=cÞBz. The effective electric field for the charged particles has a total of four components:

Ee;x ¼
beEy � Ex

2
; Ee;y ¼ � beEx þ Ey

2
; ð15Þ
1þ be 1þ be
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Eþ;x ¼
Ex þ bþEy

1þ b2þ
; Eþ;y ¼

Ey � bþEx

1þ b2þ
: ð16Þ

Now continuity equations (1) and (2) can be generalized with using of the effective electric field com-

ponents to appear as:
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It should be noted that the introduced coefficients be; bþ are the Hall parameters for electrons and ions,

which are associated with a physically meaningful magnetic field:

be ¼
leBz

c
¼ xe

me
; bþ ¼ lþBz

c
¼ xþ

mþn
; ð19Þ

where xe ¼ eBz=mec is the Larmor frequency of electrons, xþ ¼ eBz=mþc is the Larmor frequency of ions.

It is well known by the work of Raizer [7] and Mitchner and Kruger [8] that Eqs. (1) and (2) are in-

adequate in describing the sheath regions of a space charge at the immediate vicinity to electrodes (cathode

and anode). Therefore, many attempts were made to modify the diffusion-drift theory [4] or to use different

numerical simulation models, including Monte Carlo simulation [12] for describing the sheath regions of

the space charge. It was shown that improved theories can predict some new details of the glow discharge
structure, but at the same time, the diffusion drift theory is still able to predict all general features of the

glow discharge with sufficient accuracy for applied physics and different engineering applications. There-

fore, the diffusion-drift model is adopted for the present analysis.

The fact mentioned above about the approximate character of the diffusion-drift theory in the immediate

vicinity to the cathodes has the following consequence: the basic issue of inaccuracy arises from the in-

adequate boundary conditions implementation instead of the diffusion-drift theory. Therefore, we will

analyze two modifications of the diffusion-drift theory. Raizer and Surzhikov [13] have studied the first

approach in which the modification is based on the fact that the particles diffusion in the y-direction is
negligible in comparison with the component in the x-direction. The second approach has also been in-

vestigated by Raizer and Surzhikov [14]. They took into account the diffusion in all directions, but used

approximate boundary conditions for charged particle fluxes on electrodes.

To formulate these models, the typical behavior of the glow discharge is analyzed in the vicinity of

electrodes. Fig. 2(a) and (b) depict a typical distribution of electron and ion concentrations, electrical field

in glow discharge for nitrogen at a pressure of 5torr, with an electromotive force (Emf) of power supply of 3

kV, and an electrical resistance in the external circuit R0 of 300 kX. These calculations are in good ac-

cordance with known experimental data on glow discharge [14], therefore these data will be used for
evaluating all general parameters of a glow discharge: the volume concentration of ions in the cathode layer

ðy < dn; dn is the width of the cathode layer; dn � 0:1 cm) is (nþÞcl ffi 3� 1010 cm�3; the volume concen-

tration of ions and electrons in the positive column (0:16 y6 1:9 cm) is ðnþÞpc ¼ ðneÞpc ffi 5� 109 cm�3; the

maximal electric field intensity in the cathode layer is ðEÞcl ¼ 4500 V/cm; the electric field intensity in the

positive column is ðEÞpc ¼ 100 V/cm; and the maximal electric field intensity in the anode layer da 	 0:1 cm

1:96 y6 2:0 cm) is ðEÞal ¼ 270 V/cm.

Let the temperatures of electrons and ions be equal to Te ¼ 1 eV ðTe ¼ 11; 610 K), and Tþ ¼ 0:0258 eV

ðTþ ¼ 300 K). In earlier numerical studies of a normal glow discharge structure at electronic temperature
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Fig. 2. (a) Distribution of electron (solid line) and ion (dashed line) concentrations in the column of glow discharge in N2 at p ¼ 5 torr

and E ¼ 3 kV. (b) Distribution of electric field intensity Ey in the column of glow discharge in N2 at p ¼ 5 torr and 3 kV.
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up to 5 eV, all results showed that one could still use Te ¼ 1 eV as a reasonable approximation [13]. Under

these conditions, electron and ion mobilities for glow discharge in N2 can be approximated as follows [7]:

le ¼
4:4� 105

p
cm2

sV
and lþ ¼ 1:45� 103

p
cm2

sV
; ð20Þ

where p is the gas pressure in torr.
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Using Einstein’s formulas, one can get the estimation of electron and ion diffusion coefficients [6]

De ¼ leTe
cm2

s
; Dþ ¼ lþTþ

cm2

s
: ð21Þ

For the present case (p ¼ 5 torr), le ¼ 8:8� 104 cm2=s V; lþ ¼ 290 cm2=s V, andDe ¼ 8:8� 104 cm2=s,
Dþ ¼ 7:48 cm2=s.

From these data, the diffusion and drift fluxes are calculated for electrons and ions in the y-direction

Ce;y ¼ �De

one
oy

� neleEy ¼ Ce;y;dif þ Ce;y;dr; Cþ;y ¼ �Dþ
onþ
oy

þ nþlþEy ¼ Cþ;y;dif þ Cþ;y;dr; ð22Þ

where Ey ¼ �ou=oy; Ce;y;dif ; Cþ;y;dif are the diffusion fluxes of electrons and ions in the y-direction,
Ce;y;dr; Cþ;y;dr are the drift fluxes of electrons and ions in the y-direction, respectively.

These values in cathode and anode layers are used to determine the local electron and ion flux density.

In the cathode layer:

Ce;y;dif

�� ��
cl
� De

neð Þpc
dn

¼ 4:4� 1015; Ce;y;dr

�� ��
cl
� 0:1 neð ÞpcleEcl ¼ 1:98� 1017

1

cm2 s
;

Cþ;y;dif

�� ��
cl
� Dþ

nþð Þcl
dn

¼ 2:24� 1012; Cþ;y;dr

�� ��
cl
� nþð ÞcllþEcl ¼ 3:9� 1016

1

cm2 s
;

where the factor 0.1 represents an average value of electronic concentration in cathode layer.

In the anode layer:
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� De

neð Þpc
da

¼ 4:4� 1015; Ce;y;dr
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al
� neð ÞpcleEal ¼ 1:32� 1017

1
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� nþð ÞpclþEal ¼ 4:35� 1014

1

cm2 s
:

It is clear from the order of magnitude analysis that

Ce;y;dr

�� ��
cl
� Ce;y;dif

�� ��
cl
; Cþ;y;dr

�� ��
cl
� Cþ;y;dif

�� ��
cl
;

Ce;y;dr

�� ��
al
� Ce;y;dif

�� ��
al
; Cþ;y;dr

�� ��
al
� Cþ;y;dif

�� ��
al
:

ð23Þ

It should be noted that in the immediate vicinity of the cathode (where ne � nþ), electronic diffusion and

drift fluxes might be commensurable. Thus, in the sheath region the diffusion-drift theory may no longer

hold. The diffusion of electrons is very significant in the Faraday region of the glow discharge, for the case

considered, this region is at a distance around 0.1 cm from the cathode. Therefore, the model of ionization

with a ¼ aðEÞ cannot be adequately predicted by the behavior of particle distributions in this region, be-

cause the non-local effects of ionization can be very significant [6,7]. Nevertheless, this very week region of a
glow discharge will be omitted from the present consideration.

Some words should be added also concerning the chemical composition of a direct glow discharge under

consideration. It is well known that glow discharge plasma of molecular nitrogen contains not only such

obvious components as N2; Nþ
2 and electrons ðe�Þ, but also Nþ

4 and other vibrationally and electronically

excited molecules and atoms [3–7]. But using semi-empirical diffusion-drift model of the glow discharge

allows us to describe the peculiarities of electrodynamics of different species and their populations on ex-

cited energetic levels (including electron distributions on velocities) by introduction of empirical coeffi-

cients. They are: the first Townsend ionization coefficient and recombination coefficient b (see later).
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If suchmodel is developed for description of direct glow discharges in such electronegative gases as air, then

charge kinetics of negative ions O�
2 ; O�; O�

3 ; O�
4 ; NO�; NO�

2 ; NO�
3 should be taken into consideration.

This problem is much more difficult. Nevertheless, it is still possible to formulate in the frame of a semi-
empirical diffusion-drift model by additional equations for negative charged particles and some empirical

coefficients for attachment and detachment of electrons to atoms and molecules. It is also possible in the

framework of the two-fluidmodel by introduction of the effective coefficient of recombination. In fact, Raizer

showed that one can use beffective 	 40b but this is a very rough approximation and needs further study.
3. Approximate boundary conditions and two models of DCGD

The vast difference of diffusion components in sheath regions allows Raizer and Surzhikov [13,14] to

postulate a numerical model of glow discharge by neglecting the diffusion in the y-direction. This as-

sumption essentially simplified the formulation of boundary conditions, because in this case the order of

Eqs. (1) and (2) was reduced by one.

Now the electron and ion fluxes can be written in the following form;

Ce ¼ �De gradx ne � neleE; ð24Þ
Cþ ¼ �Dþ gradx nþ þ nþlþE; ð25Þ

where gradx ¼ exðo=oxÞ þ ey � 0 ¼ exðo=oxÞ, and ex; ey are the unit vectors of x and y coordinates, respectively.
The boundary conditions for electronic and ionic fluxes on electrodes are analyzed as follows. The

electronic and ionic fluxes to the cathode (without diffusion in the y-direction) are determined by (24) and

(25). Since the general mechanism of electronic emission from the cathode is the secondary electronic

emission [3–6], it yields

ðCeÞy¼0 ¼ �cðCþÞy¼0; ð26Þ

where c is the coefficient of the secondary electronic emission. This coefficient depends on a material of a

cathode and intensity of electronic field. Von Engel and Steenbeck [3], Brown [5] and Raizer [7] have ex-

tensively analyzed the influence of c on the structure of gas discharge. A range of c values from 10�1 to 10�2

were recommended for numerical study of a glow discharge structure in nitrogen [13]. As it is noted that

using an overestimated value of the secondary emission coefficient (for example, c ¼ 0:3) led to an im-

provement of computational stability [13]. Therefore, some present calculations were performed with this
value of c.

Eqs. (24)–(26) give

neð Þy¼0 ¼ c nþð Þy¼0

lþ
le

: ð27Þ

As far as the boundary conditions for the anode are concerned, it is assumed that the anode reflects all

ions and the ion flux in the y-direction is much greater than in the x-direction:

Cþj jy;dr � Cþj jx;dr þ Cþj jx;dif :

Then, one can get at y ¼ H ; ðCþÞy ¼ 0, and nþ ¼ 0.

It should be stressed that from the physical viewpoint, any additional boundary conditions for solving

the system of equations (1)–(3) are unnecessary.

Immediately adjacent to the cathode and anode surface, the approximate boundary conditions of the

vanishing Neumann type are appropriate to describe the negligible diffusion component. In fact, this type
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of numerical boundary condition is widely used in electromagnetic computations near media interfaces,

where the transverse electromagnetic field gradient is dominated over the normal component [16]. For the

present purposes, the continuity equation for the space charge is further developed to implement the nu-
merical boundary condition:

oq
ot

þ div Cþð � CeÞ ¼ 0; ð28Þ

where q ¼ nþ � ne.
In the vicinity to cathode ne � nþ, from Eq. (26), one can get

onþ
ot

¼ 1ð 
 cÞlþ
o

oy
nþ

ou
oy

� �
� Dc;eff

o2nþ
ox2

; ð29Þ

where

Dc;eff ¼ Dec
lþ
le

� Dþ: ð30Þ

All numerical experiments show that the results by the following boundary condition ðonþ=oyÞy¼0 ¼ 0

are very closely approximated to the prediction by Eq. (29). In addition, this approximate boundary

condition is computationally stable.
Similarly, one can apply the approximate boundary condition for electrons on the anode:

one
ot

¼ �le

o

oy
ne

ou
oy

� �
þ De

o2ne
ox2

: ð31Þ

The present model without diffusion in y-direction, the governing equations of glow discharge (1)–(3) are

simplified, where Ce and Cþ now are determined by Eqs. (24) and (25).

Boundary conditions in this case are; at y ¼ 0 : ne ¼ cnþðlþ=leÞ;u ¼ 0. The additional approximate

boundary condition is:

onþ
ot

¼ 1ð þ cÞlþ
o

oy
nþ

ou
oy

� �
� Dc;eff

o2nþ
ox2

: ð32Þ

At y ¼ H : ni ¼ 0; u ¼ V , the approximate boundary condition becomes:

one
ot

¼ �le

o

oy
ne

ou
oy

� �
� De

o2ne
ox2

: ð33Þ
At y ¼ 0; L :
one
oy

¼ onþ
oy

¼ ou
oy

¼ 0: ð34Þ

Here V is the voltage drops across the gas discharge gap, H , L are height and transversal scale of the gas

discharge channel, respectively.

The second approach to expand the applicable envelope of the diffusion-drift model into sheath region is

outlined as follows. In this approach, the neglected diffusion of charged particles in the y-direction is

modeled by using well-known classic results [7]. To simplify our analysis, let us consider one-dimensional

glow discharge (in the y-direction):

one
ot

þ oCe

oy
¼ a E; pð ÞCe � bnenþ; ð35Þ



446 S.T. Surzhikov, J.S. Shang / Journal of Computational Physics 199 (2004) 437–464
onþ
ot

þ oCi

oy
¼ a E; pð ÞCe � bnenþ; ð36Þ

Now the flux densities reduce to Ce ¼ �neleEy � Deðone=oyÞ, Cþ ¼ nþlþEy � Dþðonþ=oyÞ and

ðoEy=oyÞ ¼ 4peðnþ � neÞ.
The formulas for the electronic flux are based on the Lorenz approximation for the electronic distri-

bution function on velocities Ve [7]:

f Veð Þ ¼ f0 Vð Þ þ f1 Vð Þ cos h; ð37Þ

where h is the angle between Ve and y; f0; f1 are the coefficients of expansion of the distribution function,

V ¼ jVej.
Introduce the half-spherical fluxes as:

C

e ¼ 2p

Z Z
V cos hðf0 þ f1 cos hÞV 2 dV sin hdh ¼ ne �Ve

4

 Ce

2

¼ ne �Ve
4


 1

2

�
� leneEy � De

one
oy

�
; ð38Þ

where �Ve is the averaged thermal velocity of electrons, �Ve ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8kTe=pme

p
	 6:21� 105

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Te ½K�

p
¼

6:71� 107
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Te ½eV�

p
cm=s;De ¼ leTe ¼ 1�Ve=3, and l is the electronic free path. If the cathode only reflects

and emits electrons without absorption, then Cþ
e ¼ C�

e � cCþ, then as before Ce ¼ Cþ
e � C�

e ¼ �cCþ. Near

the anode we will use the following physical boundary condition, C�
e ¼ 0. In other words, the anode does

not reflect electrons. Then it yields,

ne �Ve
4

þ 1

2
leneE þ 1

2
De

one
oy

¼ 0 or
one
oy

¼ 1

De

lene
ou
oy

 
� ne

�Ve
2

!
: ð39Þ

As for ions: jCþ;drj � jCþ;dif j, the physical condition of Cþ
þ ¼ 0 leads to ni ¼ 0.

Now return to the other possible approximate boundary condition [14]. The model equation with dif-

fusion in the y-direction is formulated in the form (1)–(3), where

Ce;x ¼ nele

ou
ox

� De

one
ox

; Ce;y ¼ nele

ou
oy

� De

one
oy

; Cþ;x ¼ �nþlþ
ou
ox

� Dþ
onþ
ox

and

Cþ;y ¼ �nþlþ
ou
oy

� Dþ
onþ
oy

Finally, boundary conditions for the system of equations become:

At y ¼ 0 : ne ¼ cnþ
lþ
le

; u ¼ 0; ð40Þ
onþ
ot

¼ 1ð þ cÞlþ
o

oy
nþ

ou
oy

� �
� Dc;eff

o2nþ
ox2

; ð41Þ
At y ¼ H :
one
oy

¼ 1

De

lene
ou
oy

 
� ne

�Ve
2

!
; ð42Þ
ni ¼ 0; u ¼ V ; ð43Þ
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At y ¼ 0; L :
one
oy

¼ onþ
oy

¼ ou
oy

¼ 0: ð44Þ

In the present investigation, the constitutive relationship can be determined easily if the temperature of

neutral species is assumed to be a constant. The transport and thermo-physics properties are therefore not

dependent on the temperature. The recombination coefficient b and electron temperature are taken as

constants b ¼ 2� 10�7 cm3/s [7].
The ionization coefficient is determined by the Townsend formula [3–6]:

aðE; pÞ ¼ pA exp

�
� B

Ej j=pð Þ

�
cm�1; ð45Þ

where the dimensional constants are given as A ¼ 12 (cm torr)�1 and B ¼ 342 V/(cm torr).
These equations for boundary conditions are supplemented with the equation for the external circuit (see

Fig. 1), which is written for a stationary current as E ¼ V þ IR0, where V is the voltage on the electrodes, I
is the total discharge current, E is the Emf of the power supply, and R0 is the external resistance.
4. Governing equations for numerical solution

The continuity equations for charged particles and the Poisson equation for electric potential can be
written in the following form

ou
os

þ oau
o~x

þ obu
o~y

¼ o

o~x
D
ou
o~x

� �
þ o

o~y
D
ou
o~y

� �
þ f ; ð46Þ

where the independent and dependent variables are normalized with respect to the relevant characteristic
dimensions: ~x ¼ x=H ; ~y ¼ y=H ; s ¼ t=t0; t0 ¼ H 2=le;0E; u ¼ ne; nþ;uf g.

This equation is used to obtain the steady asymptote to the Poisson equation, therefore the time t is
actually adopted as an iterative parameter in the present approach.

Coefficients a; b;D and functions u; f are given by the following formulas:

(a) For electrons:

u ¼ ue ¼
ne
N0

; a ¼ ~le

oU
o~x

; b ¼ ~le

oU
o~y

; D ¼ ~De;
f ¼ fe ¼ aH

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ue~le

oU
o~x

� ~De

oue
o~x

� �2

þ ue~le

oU
o~y

� ~De

oue
o~y

� �2
s

� b
H 2N0

le;0E
ueuþ;

where ~le ¼ le=le;0; U ¼ u=E; ~De ¼ De=le;0E; uþ ¼ nþ=N0; le;0 is the representative value of the
electron mobility, for example, le;0 ¼ le at p ¼ 5 torr, and N0 is the typical concentration of charged

particles in positive column, in the present case, N0 ¼ 109 cm�3.

(b) For ions:

u ¼ uþ ¼ nþ
N0

; a ¼ �~lþ
oU
o~x

; b ¼ �~lþ
oU
o~y

; D ¼ ~Dþ; f ¼ fe;

where ~lþ ¼ lþ=le;0; ~Dþ ¼ Dþ=le;0E.
(c) For the Poisson equation: a ¼ b ¼ 0; D ¼ 1; f ¼ eðuþ � ueÞ, where e ¼ 4peðH 2N0=EÞ; 4pe ¼

1:86� 10�6 V.
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In summary, the specific initial values and the boundary conditions can be given as

(1) For electrons without diffusion in the y-direction:

~y ¼ 0 : ue ¼ cuþ
~lþ
~le

;

~y ¼ 1 :
oue
os

¼ �~le

o

o~y
ue

oU
o~y

� �
� ~De

o2ue
o~x2

;

~x ¼ 0;
L
H

:
oue
o~x

¼ 0:

(2) For ions without diffusion in the y-direction

~y ¼ 0 :
ouþ
os

¼ 1ð þ cÞ~lþ
o

o~y
uþ

oU
o~y

� �
� ~Dc;eff

o2uþ
o~x2

;

where ~Dc;eff ¼ ðDc;effÞ=ðle;0EÞ,

~y ¼ 1 : uþ ¼ 0;

~x ¼ 0;
L
H

:
ouþ
o~x

¼ 0:

(3) For electrons with diffusion in the y-direction

~y ¼ 0 : ue ¼ cuþlþ
~lþ
~le

;

~y ¼ 1 : ~De

oue
o~y

¼ ~leue
oU
o~y

� ue
~VeH

2le;0E
;

~x ¼ 0;
L
H

:
oue
o~x

¼ 0:

(4) For ions with diffusion in the y-direction

~y ¼ 0 :
ouþ
os

¼ 1ð þ cÞ~lþ
o

o~y
uþ

oU
o~y

� �
� ~D2

c;eff

o2uþ
o~x2

;

~y ¼ 1 : uþ ¼ 0;

~x ¼ 0;
L
H

:
ouþ
o~x

¼ 0:

(5) For electric potential:

~y ¼ 0 : U ¼ 0;

~y ¼ 1 : U ¼ E;

~x ¼ 0;
L
H

:
oU
o~x

¼ 0:

It should be stressed that all boundary conditions, including components of effective electric field with
external magnetic field were studied as computing experiments. Computations were guided by much more

simplified boundary conditions to yield the final solution for integral parameters and species distributions
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in computational domain away from the immediate vicinity of electrodes. In addition, the following

boundary conditions are computationally stable, they are:
(I) For electrons

~y ¼ 0 : ue ¼ cuþ
~lþ
~le

; ð47Þ
~y ¼ 1 :
oue
o~y

¼ 0; ð48Þ
~x ¼ 0;
L
H

:
oue
o~x

¼ 0: ð49Þ

(II) For ions without diffusion in the y-direction

~y ¼ 0 :
ouþ
o~y

¼ 0; ð50Þ
~y ¼ 1 : uþ ¼ 0; ð51Þ
~x ¼ 0;
L
H

:
ouþ
o~x

¼ 0: ð52Þ

The numerical procedure used in this study is based on the two-stage calculations. A steady-state

solution for glow discharge without magnetic field at given initial conditions was firstly obtained. Then,

this numerical solution was used as initial condition for second-stage calculations with magnetic field.

This procedure is necessary, because approximate initial conditions were used for the first-stage cal-
culations. These initial conditions were based on the one-dimensional theory of the normal glow dis-

charge, developed by Engel and Steenbeck [3]. Although the theoretical results provided reasonable

values for the initial discharge plasma parameters, they do not satisfy rigorously the required two-di-

mensional boundary conditions:

jn
p2

¼ 5:92� 10�11 AB
2lþpð1þ cÞ
lnð1þ 1

cÞ
lA=ðcm2 torr2Þ; ð53Þ
dnp ¼ 3:78A�1 ln 1

�
þ 1

c

�
cm torr; ð54Þ
Vn ¼ 3BA�1 ln 1

�
þ 1

c

�
V; ð55Þ

where jn is the normal current density, dn is the thickness of a cathode layer, Vn is the voltage drop on the

cathode layer, p is the pressure in torr; A;B are the approximation coefficients in the Townsend formula

[3–7].

The volume concentration of ions in the cathode layer can be estimated. For the present purpose, a

simplified formula for current density jn ¼ eðneleEy þ nþlþEyÞ ¼ eð1þ cÞnþlþEy is used, and Ey 	 Vn=dn.
Similarly, one can obtain
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nþ;0 	
jndn

e 1þ cð ÞVnlþ
; ne;0 	 nþ;0c

lþ
le

:

In the positive column ðnþÞpc ¼ ðneÞpc 	 109 cm�3, therefore volume concentrations of ions and electrons
in the cathode layer can be approximated as nþðx ¼ 0; yÞ ¼ ðnþÞpc þ ðnþÞ0 expð�ðy=dnÞÞ and

neðx ¼ 0; yÞ ¼ ne;0 þ ðneÞpc½1� expð�y=ðdnÞÞ�.
An estimation of the total current for a glow discharge in an axisymmetrical geometry gives

_I ¼ jnpL2
c ¼ ðE � 2VnÞ=ðR0Þ, where Lc is the radius of the current column, E, R0 are the Emf of power supply

and resistance in external electric circuit, respectively. The coefficient of ‘2’ in the circuit equation yields a

total voltage drop across the discharge gap. Again from this equation, an approximate dimension of the

current column Lc 	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE � 2VnÞ=ðjnpR0Þ

p
is obtainable.

To predict parameters of glow discharge for a plane geometry, all integral parameters should be related
to 1 cm of length in the z-direction. In this case, the above formula gives the estimated thickness of a current

column in the plane geometry.

The two-dimensional distributions of charged particles for the initial conditions are calculated as follows:

ne x; yð Þ ¼ ne xð ¼ 0; yÞ exp
"
� x

Lc

� �3
#
; nþ x; yð Þ ¼ nþ xð ¼ 0; yÞ exp

"
� x

Lc

� �3
#
:

5. Finite different scheme

The grid system of the present analysis is presented in Fig. 3. A five-point finite-difference scheme is

adopted by integrating Eq. (47) over the shaded volume:

Ai;jumþ1
i�1;j þ Bi;jumþ1

iþ1;j þ �Ai;jumþ1
i;j�1 þ �Bi;jumþ1

i;jþ1 � Ci;jumþ1
i;j þ F mþ1=2

i;j ¼ 0: ð56Þ

The coefficients of the discretized pentadiagonal matrix system are:

Ai;j ¼ aþL=rxi þ Di�1=2;j=rx�i rxi; Bi;j ¼ �a�R=rxi þ Diþ1=2;j=rxþi rxi;
�Ai;j ¼ bþL=ryj þ Di;j�1=2=ry�j ryj; �Bi;j ¼ �b�R=rxi þ Di;jþ1=2=ryþj ryj;

Ci;j ¼ 1=sþ aþR
�

� a�L
�
=rxi þ bþR

�
� b�L

�
=ryi þ Diþ1=2;j=rxþi

�
þ Di�1=2;j=rx�i

�
=rxi

þ Di;jþ1=2=ryþj
	

þ Di;j�1=2=ry�j


=ryj;
Fig. 3. Coordinates and grid structure.
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and Fi;j ¼ ððumi;jÞ=sÞ þ f mþ1=2
i;j , where m is the index of the time increment, and

rxi ¼ ~xiþ1

	
� ~xi�1



; rx�i ¼ ~xi

	
� ~xi�1



; rxþi ¼ ~xiþ1

	
� ~xi



;

ryj ¼ ~yjþ1

	
� ~yj�1



; ry�j ¼ ~yj

	
� ~yj�1



; ryþi ¼ ~yjþ1

	
� ~yj



;

Di
1=2;j ¼ 1
2
Di;j

�
þ Di
1;j

�
; Di;j
1=2 ¼ 1

2
Di;j

�
þ Di;j
1

�
;

aR ¼ 1
2
ai;j
�

þ aiþ1;j

�
; aL ¼ 1

2
ai;j
�

þ ai�1;j

�
;

a
R ¼ 1
2
aRð 
 aRj jÞ; a
L ¼ 1

2
aLð 
 aLj jÞ;

bR ¼ 1
2
bi;j
�

þ bi;jþ1

�
; bL ¼ 1

2
bi;j
�

þ bi;j�1

�
;

b
R ¼ 1
2
bRð 
 bRj jÞ; b
L ¼ 1

2
bLð 
 bLj jÞ:

Boundary conditions are presented in the following formulas:

ui;1 ¼ aiui;2 þ bi; i ¼ 1; 2; . . . ;NI ;
ui;NJ ¼ �aiui;NJ�1 þ �bi; i ¼ 1; 2; . . . ;NI ;
u1;j ¼ cju2;j þ dj; j ¼ 1; 2; . . . ;NJ ;

uNI ;j ¼ �cjuNI�1;j þ �dj; j ¼ 1; 2; . . . ;NJ :

Formulations for coefficients ai; bi; ci; di; �ai; �bi;�ci; �di in this finite-different representation of boundary

conditions were derived from boundary conditions (40)–(44) for each dependent variables u ¼ fne; nþ;ug.
Function F mþ1=2

i;j contains non-linear components

f mþ1=2
i;j ¼ a Ei;j; p

� �
Cej jfi; jg

h
� bnei;jnþi;j

imþ1=2

:

Stability of the present numerical algorithm depends strongly on finite-different approximation of ion-

ization rate aðEÞjCej, because the function aðEÞ is an exponential function of E, which depends on the

distribution of charged particles.

Module of electronic flux is approximated as follows:

Cej ji;j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ce;xð Þ2i;j þ Ce;y

� �2
i;j

q
;

where

Ce;xð Þi;j ¼ umþ1=2
e;i�1;j~leE

þ
x;i;j � umþ1=2

e;iþ1;j~leE
�
x;i;j � ~De;i;j

umþ1=2
e;iþ1;j � umþ1=2

e;i�1;j

~xiþ1 � ~xi�1

;

Ce;y

� �
i;j
¼ umþ1=2

e;i;j�1~leE
þ
y;i;j � umþ1=2

e;i;jþ1~leE
�
y;i;j þ ~De;i;j

umþ1=2
e;i;jþ1 � umþ1=2

e;i;j�1

~yjþ1 � ~yj�1

;

E

x;i;j ¼ 1

2
Ex;i;j

�

 Ex;i;j

�� ���; E

y;i;j ¼ 1

2
Ey;i;j

�

 Ey;i;j

�� ���;
Ex;i;j ¼ �Uiþ1;j � Ui�1;j

~xiþ1 � ~xi�1

; Ey;i;j ¼ �Ui;jþ1 � Ui;j�1

~yjþ1 � ~yj�1

;

Ei;j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
x;i;j þ E2

y;i;j

q
:

An iterative numerical procedure is used to facilitate the temporal evolution of solutions. Hence, the

index mþ 1=2 indicates the additional iterations on each time step. The iterative convergent criterion is set

for the difference of consecutive solutions to be less than 10�5 in relative magnitude.
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6. Numerical procedure and time scales

Finite different equation (56) is solved by an implicit finite-difference method. The fractional step iter-
ation process was adopted on a stretched grid [17,18]

xi; i
�

¼ 1; 2; . . . ;NI ; x1 ¼ 0; xNI ¼ L; yj; j ¼ 1; 2; . . . ;NJ ;

yj ¼ 0; yNJ ¼ H ; tmþ1 ¼ tm þ s; m ¼ 0; 1; . . .
�

where s is the time step. The grid was clustered near electrodes. Typical grids are shown in Fig. 4(a) and (b).

A SOR by lines method with the Thomas algorithm was used for solution of the finite-difference equations.

For each time step, several iterations were performed between equations for ne; nþ, and u. When these

iterations were convergent, the voltage drop V is calculated on electrodes by the following formula,

V ¼ E � IR0, where I ¼
R L
0
eneleEðx; y ¼ HÞdx. After convergence of the internal iteration process, the

computing procedure advances to the next time step. The process is repeated until the solution reaches a

steady asymptote.
The characteristic time scales of the investigated phenomenon can be determined according to physical

and mathematical statements of the problem. The following phenomena are taken into account: (a) the

ionization of molecules N2 by electronic impact, (b) the recombination of positively charged ions at col-

lisions with electrons, (c) the drift of ions and electrons in an electric field, (d) the diffusion of charged

particles and ambipolar diffusion, and (e) the relaxation of volumetric charge.

The characteristic times for the above listed processes are estimated for nitrogen. Drift velocities of

electrons and ions in uniform electric field E are Vdr;e ¼ leE and Vdr;þ ¼ lþE. Previously, a characteristic
X, cm

Y
,c

m
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0.5

1

1.5
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Y
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2
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(b)

Fig. 4. (a) Computed contours of glow discharge on 71� 41 grid. (b) Computed contour of glow discharge on 141� 61 grid.
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electric field has been described in the cathode layer and in the positive column of Ecl ¼ 4500 V/cm,

Epc ¼ 100 V/cm. Then, all drift velocities in the cathode layer and the positive column can be obtained for

the present conditions (p ¼ 5 torr) as ðVdr;eÞcl ¼ 3:96� 108 cm/s, ðVdr;þÞcl ¼ 1:3� 106 cm/s, ðVdr;eÞpc ¼
8:8� 106 cm/s, ðVdr;þÞpc ¼ 2:9� 104 cm/s.

For the characteristic dimensions of this discharge field, it is possible to choose (a) the cathode layer

dn ¼ 0:1 cm, (b) the positive column H ¼ 1 cm. From these physical dimensions, the characteristic time

scales of the drift motion are obtained as the following; ðtdr;eÞcl ¼ 2:52� 10�10 s, ðtdr;þÞcl ¼ 7:7� 10�8 s,

ðtdr;eÞpc ¼ 1:14� 10�7 s, and ðtdr;þÞpc ¼ 3:45� 10�5 s.

The time of ionization can be estimated by the formula; ti ¼ 1=mi where mi ¼ miðpÞ is the frequency of

ionization. Frequency of ionization is connected to the drift velocity of electrons through Townsend’s

coefficient of ionization [3,7] mi ¼ aðE; pÞVdr;e. The Townsend ionization coefficients at two values of electric
field of Ecl ¼ 4500 V/cm and Epc ¼ 100 V/cm are estimated to be acl 	 41 cm�1 and apc 	 2:2� 10�6 cm�1,

respectively. From these values, the ionization frequency and the representative time scales of the ioni-

zation process are: ðmiÞcl ¼ 1:62� 1010 s�1, ðtiÞcl ¼ 6:17� 10�11 s and ðmiÞpc ¼ 1:94� 101 s�1, ðtiÞpc ¼
5:0� 10�2 s.

The recombination rate of charged particles can also be determined. A frequency of ion-electronic re-

combination is proportional to concentration of ions, mr ¼ bnþ, s�1, therefore tr ¼ 1=bnþ, s. If one accepts
that b ¼ 2� 10�7 cm3/s and the concentration of ions is ðnþÞpc ¼ 5� 109 cm�3, then the typical time scale

of the recombination of positively charged ions by collisions with electrons is tr 	 10�3 s.
The time scales for the diffusion of charged particles and ambipolar diffusion can be assessed from the

classic theory. An average square value of the displacement of any particle in diffusion process is given by

Einstein’s formula [3,7], hx2i ¼ 2Dt, where D is the diffusion coefficient, t is the time elapsed. Three types of

charged particles diffusion are needed to be considered; (a) diffusion of electrons with De ¼ leTe ¼ 8:8� 104

cm2/s, (b) diffusion of ions with Dþ ¼ lþTþ ¼ 7:5 cm2/s, and (c) the ambipolar diffusion with diffusion

coefficient Da ¼ lþTe ¼ 290 cm2/s. Once the characteristic size dn ¼ K ¼
ffiffiffiffiffiffiffiffi
hx2i

p
¼ 0:1 cm is chosen, it yields

tdif;e ¼ K2=2De ¼ 5:68� 10�8 s, tdif ;þ ¼ K2=2Dþ ¼ 6:67� 10�4 s, tdif;a ¼ K2=2Da ¼ 1:72� 10�5 s.

Finally, the characteristic relaxation time scale of the volumetric charge is estimated as follows. For a
spatially homogeneous charge, the electrical density is defined by q ¼ eðnþ � neÞ. Then, the Gauss law

required that divE ¼ 4pq ¼ 4peðnþ � neÞ ¼ eðnþ � neÞ.
From the charge conservation equation ðoq=otÞ þ div j ¼ 0, where j ¼ rE, here it is assumed that total

current is transferred by electrons, because of the great difference of mobility of electrons and ions. Thus,

ðoq=otÞ þ rdivEþ Egradr ¼ 0. As we have assumed earlier, the charged particles distributed homoge-

neously, then ðoq=otÞ þ rdivE ¼ ðoq=otÞ þ 4prq ¼ 0; qðtÞ ¼ qðt ¼ 0Þ expð�4prtÞ. The time scale of the

volumetric charge relaxation, often referred to as the Maxwell’s time, can be calculated by the formula [6,7],

tM ¼ 1=4pr ¼ 1=4pnelee ¼ 1=enele. Substituting all numerical values into this formula, it can be shown
that the characteristic time for the relaxation of a volumetric charge is tM 	 1:25� 10�9 s.

The stable and physically meaningful time step sizes for computations can now be analyzed. The di-

mensionless time s, which appears in the system of Eq. (47) has the following expression

s ¼ tðEle=H
2Þ ¼ ðt=t0Þ . The time scale t0 ¼ ðH 2=EleÞ has the following physical meaning; each electron

needs this time for travelling through gas discharge gap under condition of uniform electric field

Ey ¼ �E ¼ E=H . For typical values of Emf considered, (1) E ¼ 3000 V, �E ¼ 1500 V/cm and t0 ¼ 1:52� 10�8

s, and (2) E ¼ 500 V, �E ¼ 250 V/cm and t0 ¼ 9:09� 10�8 s.

It is apparent from the foregoing discussion that the investigated problem has a wide range of time
scales. The fastest physical processes are ionization of molecules by electronic impact and drift of electrons

in a cathode layer. The relaxation time of a volumetric charge has a scale 10�9 s. The characteristic time of

ions drift in a cathode layer is proportional to 10�7 s. It means that to converge a solution in the cathode

layer to its steady state asymptote, it is necessary to carry out calculations till the time elapse exceeded the

value of 10�7 s, however, the calculation time step need not be shorter than � 10�9 s.



Table 1

Representative time in seconds

Cathode layer Positive column

tdr;e 2.52� 10�10 3.79� 10�8

tdr;þ 7.7� 10�8 1.15� 10�5

ti 6.17� 10�11 1.87� 10�7

tr 10�3

tdif ;e 5.68� 10�8

tdif ;þ 6.67� 10�4

tdif ;a 1.72� 10�5

tm 1.25� 10�9

t0 1.52� 10�8
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The characteristic time of electrons drift in the positive column ð� 10�7 s) and ions drift in the positive

column ð� 4:0� 10�5 s) is commensurable with electronic ð� 6:0� 10�8 s) and ambipolar diffusion

ð� 2:0� 10�5 s). The diffusion time of ions ð� 7:0� 10�4 s) is compatible with representative recombi-

nation time ð� 10�3 s). As all the listed processes can render appreciable influence on a physically mean-

ingful steady state solution under those constraints, it is assumed that the range of time scales vary greatly

through the values from 10�11 to 10�3 s. It is obvious; the required temporal resolution of the present

problem imposes a significant computing challenge.
The adopted finite difference method allows calculations with time steps that cannot be compatible with

all the time scales considered in here. It is well known that the computational stability of any calculations is

determined by the type of equations to be solved, finite-difference approximation method, and quality of

grids [17,18]. However, it is possible to specify two dimensionless criteria of computational stability to guide

the selection of the allowable time step. The Courant–Friedrichs–Lewy (CFL) numbers for convection and

diffusion are CFLh ¼ aDt=h � 1; CFLp ¼ ð2DDt=h2Þ � 1 , where a is the characteristic value of velocity,

Eq. (47), Dt is the time step and h is the spatial spacing of the grid.

The fact that CFL numbers are limited to unit does not mean that these conditions are neither optimal
nor necessary for the present numerical simulation. These criteria are dictated by the stability condition of

explicit finite-difference schemes for the linear transfer model equations with dissipation. By examining Eq.

(47), it reveals that there is a scale of speed ~V ¼ leE=H which corresponds to the electrons drift velocity in a

uniform electric field with intensity Ey ¼ E=H . For a typical calculation with E¼ 3000 V and H ¼ 2 cm, it

was found ~V ¼ 1; 32� 108 cm/s. If an explicit finite-difference scheme is used for solving of Eq. (47), the

limiting time steps are dictated by the CFL condition. For the present investigation, a ¼ ðVdr;eÞcl ¼
3:96� 108 cm/s, h ¼ 0:1dn ¼ 0:01 cm, Dth ¼ h=a ¼ 2:53� 10�11 cm/s, and Dtp ¼ h2=2D ¼ 5:68� 10�10 cm/s.

The dimensionless time step should be s ¼ ððminðDth;DtpÞÞ=t0Þ ¼ 1:66� 10�3.
Summary of the characteristic time scales for glow discharge in N2 at p ¼ 5 torr, E ¼ 3 kV is given in

Table 1.
7. Computing accuracy assessment

As it has been shown in reference [17], the present finite difference scheme for solving Eq. (47) is formally

second order accurate for a smooth solution. However, in the region of steep gradients, the accuracy of this
scheme deteriorates to a first-order approximation. Therefore, it is necessary to assess the effect of nu-

merical dissipation to the overall accuracy of the solution. In the present analysis, an attempt has been

made to compare the numerical dissipation with physical diffusion, or numerical diffusion fluxes with

physical drift and diffusion fluxes for the first order finite-difference equation.
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umþ1
i � umi

s
þ a

umi � umi�1

h
¼ 0; um¼0

i ¼ uiðt ¼ 0; xiÞ ¼ uiðxiÞ:

For the model linear convection equation

ou
ot

þ a
ou
ox

¼ 0; a > 0; uðt ¼ 0; xÞ ¼ u0ðxÞ:

One can show that the above finite-difference approximation is equivalent to the following differential
equation:

ou
ot

þ a
ou
ox

¼ Dn

o2u
ox2

; where Dn ¼
ah
2

1
	

� as
h



¼ ah

2
1ð � CFLhÞ

and Dn is the numerical diffusion coefficient. It means that upper bound of the numerical diffusion coef-

ficient is Dn ¼ ah=2.
The representative diffusion and drift fluxes have been determined previously for a typical glow dis-

charge. The numerical diffusion fluxes for electrons and ions in the y-direction are (formulas for numerical
diffusion fluxes in the x-direction are analogous):

ðCe;nÞy ¼ �De;n

one
oy

; ðCþ;nÞy ¼ �Dþ;n

onþ
oy

;

where De;n ¼ 0:5Dy � Ve;dr; Dþ;n ¼ 0:5Dy � Vþ;dr or De;n ¼ 0:5Dy � leðou=oyÞ; Dþ;n ¼ 0:5Dy � lþðou=oyÞ. As-
sume ou=oy 	 Du=Dy, it is then obtained De;n 	 ðleDuÞ=2; Dþ;n 	 ðlþDuÞ=2, and ðCe;nÞy 	
0:5leDuððDneÞ=ðDyÞÞ, ðCþ;nÞy 	 0:5lþDuððDnþÞ=ðDyÞÞ.

Since coefficients of physical diffusion are determined by Einstein’s formulas, the relations between

physical diffusion and numerical diffusion fluxes are:

Ce;dif

Ce;n

	 2Te
Du

;
Cþ;dif

Cþ;n

	 2Tþ
Du

:

The corresponding relations between physical drift fluxes and numerical diffusion fluxes become:

Ce;dr

Ce;n

	 2
ne
Dne

;
Cþ;dr

Cþ;n

	 2
nþ
Dnþ

:

So, one can conclude that for the calculation on a typical grid, for example 100� 100,

Ce;dr � Ce;n � Ce;dif ; Cþ;dr � Cþ;n � Cþ;dif :

These results show that on a coarse grid the physical drift fluxes can be on the same order of magnitude

as that of the numerical diffusion fluxes in the cathode layer.
8. Numerical results

The glow discharge in nitrogen is investigated between flat plate electrodes of 4 cm in length and 2 cm apart.

The discharge ismaintained by an electric field of the range from 1 to 2 kV, (1 < E < 2 kV), the external circuit

has a resistance of 300 kX, and the ambient pressure ranges from 5 to 10 torr. The applied transverse magnetic

field is limited to a maximum magnitude of 0.1 T (�0:1 < B < 0:1). For all numerical simulations, the coef-

ficient of the secondary electronic emission is assumed to have the range from 0.1 to 0.3 [7].
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Fig. 5. (a) Electron contours in the gas discharge gap at p ¼ 5 torr, E ¼ 2 kV, c ¼ 0:1; H ¼ 2 cm; I ¼ 4:85 mA, jc;max ¼ 3:58 mA/cm2,

ja;max ¼ 6:03 mA/cm2, V ¼ 533 V; The concentration levels are normalized by the value of cm3. Parameters of the one-dimensional

normal glow discharge (the Engel–Steenbeck theory): cm, V, mA/cm2. (b) Ion contours in the gas discharge gap at p ¼ 5 torr, E ¼ 2

kV, c ¼ 0:1; H ¼ 2 cm; I ¼ 4:85 mA, jc;max ¼ 3:58 mA/cm2, ja;max ¼ 6:03 mA/cm2, V ¼ 533 V; The concentration levels are normalized

by the value N0 ¼ 10�9 cm�3. Parameters of the one-dimensional normal glow discharge (the Engel–Steenbeck theory): dn ¼ 0:15 cm,

Vn ¼ 205 V, Jn ¼ 1:37 mA/cm2. (c) Current density on the anode (solid line) and cathode (dashed line); p ¼ 5 torr, E ¼ 2 kV,

c ¼ 0:1; H ¼ 2 cm; I ¼ 4:85 mA, jc;max ¼ 3:58 mA/cm2, ja;max ¼ 6:03 mA/cm2, V ¼ 533 V. Parameters of the one-dimensional normal

glow discharge (the Engel–Steenbeck theory): dn ¼ 0:15 cm, Vn ¼ 205 V, Jn ¼ 1:37 mA/cm2. (d) Distribution of electron (dashed line)

and ion (solid line) concentrations along the glow discharge centerline; p ¼ 5 torr, E ¼ 2 kV, c ¼ 0:1; H ¼ 2 cm; I ¼ 4:85 mA,

jc;max ¼ 3:58 mA/cm2, ja;max ¼ 6:03 mA/cm2, V ¼ 533 V. (e) Electrical potential at p ¼ 5 torr, E ¼ 2 kV, c ¼ 0:1; H ¼ 2 cm; I ¼ 4:85

mA, jc;max ¼ 3:58 mA/cm2, ja;max ¼ 6:03 mA/cm2, V ¼ 533 V; Numbers on curves are u=E. (f) Electrical conductivity (X�1 cm�1)

contours in the gas discharge gap at p ¼ 5 torr, E ¼ 2 kV, c ¼ 0:1; H ¼ 2 cm; I ¼ 4:85 mA, jc;max ¼ 3:58 mA/cm2, Ja;max ¼ 6:03 mA/

cm2, V ¼ 533 V.
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The influence of the secondary electronic emission coefficient c on the glow discharge structure was also

investigated. As it has been mentioned earlier, this coefficient is characterized by the electrical property of

electrode material. In addition, this coefficient strongly depends on the intensity of the near-cathode electric
field. Unfortunately, the nature of this dependency is still not satisfactorily understood, therefore the

constant values of c are applied to all present calculations.

Numerical results obtained for different pressures p, Emf of power supply E, and c were compared with

the classical theory of Engel and Steenbeck [3,4]. This theory gives the classic results for the cathode voltage

drop Vn, the depth of the cathode layer ðpdÞn and the normal current density jn, see Eqs. (54)–(56).

It should be stressed that the Engel and Steenbeck theory [3] is an approximate theory of the normal

glow discharge for the one-dimensional cathode layer. At the same time, many experimental and theoretical

studies have substantiated these predictions, which give the credence to their theory for glow discharges.
Therefore, the comparison with this theory is chosen as validation base for the present calculations. The

normal current densities predicted by the Engel and Steenbeck theory ðjnÞ are presented in legends for

numerical simulation results. These legends also contain values of total current I, the maximum values of

current density on cathode ðjc;maxÞ and anode ðja;maxÞ, as well as the total voltage drop V across the gas

discharge gap.

The investigated glow discharge exists in the mode of ‘‘normal density current’’, where the current

column occupies only a part of the gas discharge space [6]. Based on the current density distribution

along the cathode, one can conclude that boundary effects (diffusion and drift in the x-direction) are
significant. It means that current density in the case under consideration must exceed the predicted value

by the idealized theory of Engel and Steenbeck [3,4]. In conformity with this understanding, the ‘‘normal

current density’’, which is obtained from the one-dimensional theory of Engel and Steenbeck, is jn ¼ 1:37
mA/ cm2.

A glow discharge at p ¼ 5 torr, E ¼ 2 kV, c ¼ 0:1 of the basic configuration is shown in Fig. 5. Initial

conditions for these calculations correspond to the glow discharge without an externally applied magnetic

field. The basic elements of the glow discharge structure are simulated by the present computing model. The

area of charged space near cathode is confined to a very small dimension along the y-axis. In this case the
height of the cathode layer has the value of �0.15 cm, that agrees very well with value 0.151 cm, which is

predicted by the one-dimensional theory of Engel and Steenbeck. However, it should be noted that un-

certainty in the determination of dn from the numerical results is understandable.

Two-dimensional distributions of electron and ion concentrations are shown in Fig. 5(a) and (b). In the

present results, the levels of concentration are normalized by the value of N0 ¼ 109 cm�3 for the glow

discharge. It is particularly interesting to note that the extremely high ion concentration is located im-

mediately adjacent to the cathode. This phenomenon has been frequently observed in experiments and a

greater value of nearly one order of magnitude is indicated by the present calculation.
The current densities on the cathode and anode are shown in Fig. 5(c). Distributions of electron and ion

concentrations along y-axis are shown in Fig. 5(d). In the last figure, one can clearly define the main do-

mains of glow discharge; (1) the area of positive charge space near to cathode (the cathode layer), (2) the

area of negative charge space near to anode (the anode layer), and (3) the area of a quasineutral plasma (the

positive column).

In Fig. 5(d), the computed electron and ion number densities exhibit the anticipated electric neutrality of

the glow discharge path away from the sheath region. The cathode fall is also duplicated by the calculated

electric potential in Fig. 5(e). Finally, the electric conductivity of the glow discharge based on the computed
electron mobility is depicted in Fig. 5(f) to show the previously unobtainable detailed variation of the glow

discharge. This value was calculated by the following formula, re ¼ elene. It should be stressed that in the

case with external magnetic field the electrical conductivity becomes a tensor, rk ¼ reþ
ð1=ð1þ b2eÞÞ; r? ¼ rðbe=ð1þ b2eÞÞ, where rk; r? are the electrical conductivities in the parallel and per-

pendicular orientations of the applied external magnetic field, respectively [7,8].
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Fig. 6. (a) Electron contours in the gas discharge gap at p ¼ 10 torr, E ¼ 2 kV, c ¼ 0:1; H ¼ 2 cm; I ¼ 3:9 mA, jc;max ¼ 7:03 mA/cm2,

ja;max ¼ 8:89 mA/cm2, V ¼ 835 V. The concentration levels are normalized by the value of N0 ¼ 10�9 cm�3. Parameters of the one-

dimensional normal glow discharge (the Engel–Steenbeck theory): dn ¼ 0:0755 cm, Vn ¼ 205 V, jn ¼ 5:49 mA/cm2. (b) Ion contours in

the gas discharge gap at p ¼ 10 torr, E ¼ 2 kV, c ¼ 0:1; H ¼ 2 cm; I ¼ 3:9 mA, jc;max ¼ 7:03 mA/cm2, ja;max ¼ 8:89 mA/cm2, V ¼ 835

V. The concentration levels are normalized by the value of N0 ¼ 10�9 cm�3. Parameters of the one-dimensional normal glow discharge

(the Engel–Steenbeck theory): dn ¼ 0:0755 cm, Vn ¼ 205 V, jn ¼ 5:49 mAcm2. (c) Current density on the anode (solid line) and cathode

(dashed line); p ¼ 10 torr, E ¼ 2 kV, c ¼ 0:1; H ¼ 2 cm; I ¼ 3:9 mA, jc;max ¼ 7:03 mA/cm2, ja;max ¼ 8:89 mA/cm2, V ¼ 835 V; Pa-

rameters of the one-dimensional normal glow discharge (the Engel–Steenbeck theory): dn ¼ 0:0755 cm, Vn ¼ 205 V, jn ¼ 5:49 mA/cm2.

(d) Distribution of electron (dashed line) and ion (solid line) concentrations along the glow discharge centerline; p ¼ 10 torr, E ¼ 2 kV,

c ¼ 0:1; H ¼ 2 cm; I ¼ 3:9 mA, jc;max ¼ 7:03 mA/cm2, ja;max ¼ 8:89 mA/cm2, V ¼ 835 V. (e)Electrical potential p ¼ 10 torr, E ¼ 2 kV,

c ¼ 0:1; H ¼ 2 cm; I ¼ 3:9 mA, jc;max ¼ 7:03 mA/cm2, ja;max ¼ 8:89 mA/cm2, V ¼ 835 V; numbers on curves are u=E. (f) Electrical
conductivity (Omega�1 cm�1) contours in the gas discharge gap at p ¼ 10 torr, E ¼ 2 kV, c ¼ 0:1; H ¼ 2 cm; I ¼ 3:9 mA, jc;max ¼ 7:03

mA/cm2, Ja;max ¼ 8:89 mA/cm2, V ¼ 835 V.
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Fig. 7. (a) Electron contours in the gas discharge gap at p ¼ 5 torr, E ¼ 2 kV, c ¼ 0:3; H ¼ 2 cm; I ¼ 4:85 mA, jc;max ¼ 4:97 mA/cm2,

ja;max ¼ 6:7 mA/cm2, V ¼ 454 V; The concentration levels are normalized by the value of N0 ¼ 10�9 cm�3; Parameters of the one-

dimensional normal glow discharge (the Engel–Steenbeck theory): dn ¼ 0:0924 cm, Vn ¼ 125 V, jn ¼ 2:65 mA/cm2. (b) Ion contours in

the gas discharge gap at p ¼ 5 torr, E ¼ 2 kV, c ¼ 0:3; H ¼ 2 cm; I ¼ 4:85 mA, jc;max ¼ 4:97 mA/cm2, ja;max ¼ 6:7 mA/cm2, V ¼ 454 V;

The concentration levels are normalized by the value of N0 ¼ 10�9 cm�3; Parameters of the one-dimensional normal glow discharge

(the Engel–Steenbeck theory): dn ¼ 0:0924 cm, Vn ¼ 125 V, jn ¼ 2:65 mA/cm2. (c) Current density on the anode (solid line) and cathode

(dashed line); p ¼ 5 torr, E ¼ 2 kV, c ¼ 0:3; H ¼ 2 cm; I ¼ 4:85 mA, jc;max ¼ 4:97 mA/cm2, ja;max ¼ 6:7 mA/cm2, V ¼ 454 V; Pa-

rameters of the one-dimensional normal glow discharge (the Engel–Steenbeck theory): dn ¼ 0:0924 cm, Vn ¼ 125 V, jn ¼ 2:65 mA/cm2.

(d) Distribution of electron (dashed line) and ion (solid line) concentrations along the glow discharge centerline; p ¼ 5 torr, E ¼ 2 kV,

c ¼ 0:3; H ¼ 2 cm; I ¼ 4:85 mA, jc;max ¼ 4:97 mA/cm2, ja;max ¼ 6:7 mA/cm2, V ¼ 454 V.
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The data presented in Fig. 5 will be used further for comparison with other computing simulations. To

investigate the influence of different input parameters on the gas discharge structure, additional numerical

experiments were performed. First of all, numerical simulations have been performed to study the influence

of gas pressure and Emf of power supply on electrodynamic structure of the glow discharge. The influence

of external magnetic field on the glow discharge structure was also performed for different gas pressure in

the range from 5 to 10 torr.

The glow discharge behavior, by increasing the Emf of external circuits, results in the increasing of
transversal (along x-axes) size of the positive column which is faithfully reproduced. At the same time, the

transverse discharge space size adjacent to the cathode is also substantially greater. This tendency is re-

peated for all investigated pressures (p ¼ 5, 10 torr) and for other coefficients of the secondary electron

emission. Actually, the different electron emission coefficients have really simulated different types of the

cathode materials; c ¼ 0:1–0:3.
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Fig. 8. (a) Electron contours (in 109 cm�3) in the gas discharge gap at time moments t ¼ 50, 100, 150 ls; p ¼ 5 torr, E ¼ 2 kV,

c ¼ 0:1; H ¼ 2 cm, B ¼ 0:01 T. (b) Ion contours (in 109 cm�3) in the gas discharge gap at time moments t ¼ 50, 100, 150 ls; p ¼ 5 torr,

E ¼ 2 kV, c ¼ 0:1; H ¼ 2 cm, B ¼ 0:01 T.
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Decreasing the gas discharge pressure results in a considerable increase not only in the width of the

discharge, but also the thickness of the cathode layer. This observation is in full accordance with the Engel

and Steenbeck theory [3,4]. The reverse behavior is also confirmed by the present numerical results; by

increasing the ambient pressure all characteristic sizes of a glow discharge are decreased.
Computed results of the glow discharge at p ¼ 10 torr and E ¼ 2 kV are shown from Fig. 6(a)–(f). As in

the earlier presentation, these figures present the electron (a) and ion (b) concentrations, the current density

distribution along the cathode and anode (c), distributions of electron and ion concentrations of the glow

discharge along the centerline in the y-direction (d), electrical potential (e), and contours of electrical

conductivity (f). The corresponding theoretical result of the Engel and Steenbeck theory is obtained for the

case of the following parameters: dn ¼ 0:0755 cm, Vn ¼ 205 V, jn ¼ 5:49 mA/cm2. These values are in good

agreement with the present numerical results.

By comparing spatial distributions of the electrical conductivity at pressures p ¼ 5 torr (Fig. 5(f)) and
p ¼ 10 torr (Fig. 6(f)), one can detect a decreasing degree of ionization which is in perfect accordance with

the laws of nature. It is a well-known consequence; at the higher pressure a higher collisional frequency of
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Fig. 9. (a) Electron contours (in 109 cm�3) in the gas discharge gap at time moments t ¼ 10, 20, 30 ls; p ¼ 5 torr, E ¼ 2 kV,

c ¼ 0:1; H ¼ 2 cm, B ¼ 0:05 T. (b) Ion contours (in 109 cm�3) in the gas discharge gap at time moments t ¼ 10, 20, 30 ms; p ¼ 5 torr,

E ¼ 2 kV, c ¼ 0:1; H ¼ 2 cm, B ¼ 0:05 T.
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electrons with neutral particles will take place [6]. Therefore, to ionize similar volumes of neutral gas, a

higher level of voltage drop across a gas discharge gap is required. In the present calculation, moderate

increase in the value of the voltage drop (compare: V ¼ 835 V at p ¼ 10 torr and V ¼ 533 V at p ¼ 5 torr)

still produces a decreased volume of the gas discharge.

As it has been discussed previously, the secondary electronic emission coefficient c is a very significant

input parameter of the developed model, which simulates different electrode materials. Fig. 7(a)–(d) show

parameters of the glow discharge at c ¼ 0:3; p ¼ 5 torr, E ¼ 2 kV. Even from the presented results, one can

see significant changes in the glow discharge structure. For the cases investigated, the depth of the cathode
layer and transverse size of the cathode spot are decreasing in accordance with the Engel andSteenbeck

theory dn ¼ 0:0924 cm, Vn ¼ 125 V, jn ¼ 2:65 mA/cm2). In short, the present results capture all essential

features of glow discharge physics and are validated by the classic theory by von Engel and Steenbeck [3,4].

Additional direct comparison with experimental data is planned for the future.

From the theory developed in the present work, a transverse magnetic field will affect the gas discharge

structure at be � 1 (and, especially at bi � 1). It was found that the inductivity of the magnetic field exerts

influence on the global structure of the glow discharge. Figs. 8 and 9 show electron and ion contours in the

glow discharge at p ¼ 5 torr and E ¼ 2 kV at consecutive instants after magnetic field of B ¼ þ0:01 T
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Fig. 10. (a) Electron contours (in 109 cm�3) in the gas discharge gap at time moments t ¼ 10, 20, 30 ms; p ¼ 5 torr, E ¼ 2 kV,

c ¼ 0:1; H ¼ 2 cm, B ¼ �0:05 T. (b) Ion contours (in 109 cm�3) in the gas discharge gap at time moments t ¼ 10, 20, 30 ms; p ¼ 5 torr,

E ¼ 2 kV, c ¼ 0:1; H ¼ 2 cm, B ¼ 0:05 T.
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(Fig. 8) and B ¼ þ0:05 T (Fig. 9) is applied, respectively. These are transient configurations of the direct

glow discharge.

In all cases presented, the discharge column moves continuously along electrode surfaces. First of all, it

is revealed that a transverse magnetic field shifts discharge path from the initial position. Comparing nu-

merical simulations for different magnetic fields B (Figs. 8 and 9), one can conclude that velocity of the

discharge drifts perpendicular to applied magnetic field and is proportional to the value of B. The average
velocity of such drift in the first case (B ¼ þ0:01 T) equals to VB;drift 	 6:5� 103 cm/s, and in the second case
(B ¼ þ0:05 T) �VB;drift 	 3:5� 104 cm/s. Due to the nature of ambipolar mechanism, these drift velocities

are much less than electronic drift velocities but greater than the ionic drift velocities.

The direction of shift depends upon the polarity of the applied magnetic field. Fig. 10(a) and (b) show

distributions of electron and ion concentrations at the same successive instants as they have been shown in

Fig. 9(a) and (b), but at a magnetic field of B ¼ �0:05 T. Reversing the magnetic field polarity results in a

corresponding shift of ions and electrons distributions relative to the center-plane of the discharge (compare

Figs. 9 and 10).

Fig. 11 shows electron and ion contours in the glow discharge at p ¼ 10 torr and E ¼ 2 kV at consecutive
instants (t ¼ 10, 20 and 30 ls) after a magnetic field of B ¼ þ0:1 T is applied. This calculation, however, is
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Fig. 11. (a) Electron contours (in 109 cm�3) in the gas discharge gap at time moments t ¼ 10, 20, 30 ms; p ¼ 10 torr, E ¼ 2 kV,

c ¼ 0:1; H ¼ 2 cm, B ¼ 0:1 T. (b) Ion contours (in 109 cm�3) in the gas discharge gap at time moments t ¼ 10, 20, 30 ms; p ¼ 10 torr,

E ¼ 2 kV, c ¼ 0:1; H ¼ 2 cm, B ¼ 0:1 T.
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obtained under a higher ambient pressure (p ¼ 10 torr). Therefore, to achieve the same drift velocity of the

discharge plasma in magnetic field as that of the previous calculation (p ¼ 5 torr and B ¼ þ0:05 T; Fig. 9),

there is a need to apply a stronger magnetic field.
9. Conclusions

A theory and two-dimensional numerical simulations for modeling the electrodynamic structure of the
glow discharges with magnetic field are presented. Two different physical-based boundary conditions are

derived to extend the applicable range of the drift-diffusion glow discharge into the plasma sheath region.

The drift-diffusion model with modified numerical boundary conditions has successfully simulated the

complete glow discharge physics including the sheath regions.

All two-dimensional calculations of the glow discharge structure in nitrogen have been performed under

various initial values and boundary conditions. The computed results exhibit good agreement with the

classic theory of von Engel and Steenbeck.
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The present result also demonstrated a new capability to simulate numerically the influence of a strong

and a physically reasonable external magnetic field to a gas discharge structure.
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